

Utrafast X-ray source

Machine Design

BESAC sub-committee

February 2003

which is driven by scientific requirements We propose a feasible machine design

•
77
(7)
T
Ö
<u> </u>
-
0
3
3
o o
7
7
(4)

10 KHz

Synchronization

10's fs

Variable polarizationBroad photon range

~ 0.02-12 keV

- Hard x-rays

1-12 keV

Pulse duration

Tunable

≤ 50 fs above 3 keV

· High flux

initial 106, goal 107 (ph/pulse/0.1%BW)

Soft x-rays

~ 20-1000 eV

Pulse duration

Tunable

50-200 fs from HGHG, goal 20 fs

Variable flux

108-10¹³ (ph/pulse/0.1%BW)

- Multiple sophisticated short-pulse lasers with temporal and spatial pulse shaping
- 800 nm, < 100 fs oscillator serves as master oscillator
- 267 nm photocathode laser
- 200-150 nm tuneable HGHG seed
- Multiple tuneable 267-3000 nm experiment initiation

LUX is the latest development in LBNL's history of ultrafast x-ray facilities

- Kim, K.-J., S. Chattopadhyay, and C.V. Shank, "Generation of femtosecond x-ray pulses by 90 degree Thomson scattering", Nuc. Inst. and Meth. in Phys. Res. A, 1994. 341: p. 351–354.
- 76(6): p. 912-915 Zholents, A.A. and M.S. Zolotorev, "Femtosecond x-ray pulses of synchrotron radiation", Phys. Rev. Lett., 1996.
- Phys. Rev. Lett., 1996. 77(20): p. 4182-4185. Leemans, W.P., et al.," X-ray based time resolved electron beam characterization via 90° Thomson scattering",
- tool for probing the structural dynamics of materials.", Science, 1996. 274: p. 236-238 Schoenlein, R.W., et al., "Femtosecond x-ray pulses at 0.4 angstroms generated by 90° Thomson scattering: A
- deflection", Nuc. Instr.and Methods in Phys. Res. A, 1999. 425: p. 385-389. Zholents, A., P. Heimann, M. Zolotorev, and J. Byrd, "Generation of subpicosecond x-ray pulses using RF orbit
- Schoenlein, R.W., et al.," Generation of x-ray pulses via laser-electron beam interaction", Appl. Phys. B, 2000. 71: p. 1-10.
- Schoenlein, R.W., et al.," Generation of femtosecond pulses of synchrotron radiation", Science, 2000. 287: p. 2237-2240

John Corlett, February 2003

Recirculating linac concept - a refined source for ultrafast x-ray pulses

- High brightness RF photocathode gun produces high-quality electron beam
- Accelerate in multiple passes through superconducting linac
- · 2.5-3 GeV beam generates x-rays

 Design is based on existing technologies and demonstrated physics parameters

- Compact
- Highly stable superconducting rf
- Flexible configuration
- Each pass provides opportunities for
- manipulation of the electron beam
- photon production
- timing pulses
- Variable repetition rate

Facility provides a wide range of x-ray wavelengths, operating simultaneously

Tuneable x-ray beams from undulators

Short-pulse hard x-ray scheme conceived and developed at LBNL¹

- Generate ~ nC high-brightness bunch in rf photocathode (3 mm-mrad @ 1 nC)
- Produce small vertical emittance from round beam (0.4 mm-mrad in vertical)
- Accelerate 2ps electron bunch to 3 GeV in recirculating linac
- Produce time / angle correlation within bunch
- Radiate in insertion devices1
- Compress x-ray pulse from 2 ps to \sim 50 fs in beamline optics

¹A. Zholents et al "Generation of subpicosecond x-ray pulses using RF orbit deflection", NIM A 425 (1999)

389

John Corlett, February 2003

Short-pulse hard x-ray scheme conceived and developed at LBNL

accelerator parameters and radiation properties Hard x-ray pulse duration is determined by the

- The pulse duration is determined by
- Beam emittance for shorter wavelengths
- Optical diffraction for longer wavelengths
- defines pulse duration for hard x-rays The "flat beam" requirement (small electron beam emittance in one direction)
- Small emittance in direction of head/tail kick
- Flat-beam demonstrated at FNPL, LBNL is collaborator in this experiment

Hard x-ray flux from tunable superconducting undulator harmonics

- Same flux/pulse as 3rd generation light sources
- 1000 times shorter pulse

Hard x-ray undulator beamline

Source dimensions 390 μ m (h) \times 20 μ m (v)

Source divergence 50 μ rad (h) × 750 μ rad (v)

Focus divergence 500 μ rad (h) \times 300 μ rad (v)

Focus dimensions 48 μ m (h) × 55 μ m (v)

Conventional optical elements

Temporal stability will be important

12						Endstation
				silicon	elliptical mirror	
10.667	89.6	339	200 x 20	Pt-coated	Plane	М3
					mirror	
				silicon	parabolic	
7	89.6	1430	300 x 25	Pt-coated	Plane	M2
	□ = -3.5			(111)		
6	75.6912		60 x 60	Silicon	Crystal	X1, X2
					mirror	
				silicon	parabolic	
Ŋ	89.6	1430	650 x 60	Pt-coated	Plane	M1
source (m)				material		
from	$\mathbf{angle}(°)$	(m)	(mm)	blank		
Distance	Incidence	Radius	Dimensions	Coating and	${f Type}$	

High Gain Harmonic Generation (HGHG) EUV and soft x-ray production

- Seed optical pulse modulates a short section of the electron bunch
- Modulated section radiates coherently at a harmonic of the modulation wavelength
- Developed and demonstrated by L.-H. Yu et al, Brookhaven National Laboratory [1]

Multiple beamlines with 4-stage harmonic booster

Wide range of soft x-ray wavelengths accessible by tuning seed OPA and

OPA designed by F. Parmigiani Tuneable seed laser undulators - 6.5 eV seed laser 1014 photons/pulse 1000 times shorter pulse light sources flux/pulse 10³-10⁵ times 3rd generation 14 32 et beamine 126 2 to 2 Phorons Pulse R, 150 et beamline NOST Photons Pulse 318 1000 et beamline

Conventional undulator designs

are an integral component of the facility Sophisticated short-pulse laser systems

delay between pump pulse and x-ray pulse Synchronize systems to allow controlled

- "Fast" feedback on accelerator systems control pulse-pulse stability
- Measured timing error updates feedback systems to compensate "slow" drift

Synchronize deflecting cavities and pump laser for hard x-ray production

- Deflecting cavity phase stability ~ 0.01°
- 50 fs synchronization

Ultimate synchronization from beam-derived optical pulses to seed end-station lasers

- \sim 1 μ s turn-turn delay
- Allows time for optical pulse manipulation, amplification, and distribution

Performance parameters

Synchronization

- Soft x-ray pulses locked to seed laser in HGHG process
- Derive seed laser and sample excitation laser pulses from common oscillator
- Independent of electron bunch timing
- Goal 20 fs stability
- Hard x-ray pulses insensitive to electron bunch jitter
- Phase stability of deflecting cavities via feedback
- Goal 50 fs stability
- Beam-derived optical pulses for ultimate timing stability

Pulse duration

- ≤ 50 fs hard x-rays
- Bunch emittance, diffraction limit, deflecting voltage
- EUV and soft x-ray adjustable 50-200 fs initially, goal 20 fs or less
- Seed laser, slippage in FEL process

Contd.

Contd.

Performance parameters

Wavelength tuning

- EUV and soft x-ray
- Adjust seed laser, H6H6 undulator gaps
- Adjust monochromator
- Hard x-ray
- Adjust superconducting undulator current
- Adjust monochromator

Polarization

- EUV and soft x-ray
- Circular polarization from helical undulators
- Switchable LH, RH
- Hard x-ray
- Linearly polarized

Contd.

Contd.

Performance parameters

Pulse energy

- Goal 10⁷ photons/pulse hard x-rays
- Bunch charge, undulator length
- 108 1013 photons/pulse EUV / soft x-rays
- Bunch charge, seed laser, FEL gain

Flux stability

- High rep-rate results in rapid averaging
- < 10 % shot-shot variation hard x-ray</p>
- 10-20 % shot-shot variation soft x-ray
- \sim 0.1% in few seconds at 10 kHz rep. rate

Repetition rate

- Up to 10 kHz for nominal pulse energy
- Higher rates for reduced flux/pulse
- Energy recovery for higher beam power

Contd.

Contd.

Performance parameters

Coherence

- EUV / soft x-rays spatially and temporally coherent

Power density

- $10^{13} \text{ W/cm}^2 \text{ EUV}$ and soft x-ray readily achievable
- Seed pulse, bunch charge density

Energy chirp

- Energy chirp of approximately 1% possible for dedicated operating mode
- Pass through linac off-crest

Machine feasibility

- Two year study documented in LBNL publication LBNL-51766
- Physics design optimizied for ultrafast x-ray production with conservative accelerator physics approach
- 2 ps bunch length, low average current
- Generate 10's fs x-rays from ps bunches, avoids multi-bunch problems, only 30 kW nominal beam power in final arc
- Recirculating linac configuration is refined, flexible, and upgradeable
- Physics parameters demonstrated or modest extrapolation
- Engineering refinements will be needed in some technologies to improve reliability and reduce costs
- Design builds on LBNL expertise and experience in accelerator physics, engineering, and related technologies
- Center for Beam Physics / Accelerator and Fusion Research Division / **Advanced Light Source Division**
- · ALS, B-factory, LHC, SNS, NLC, Thomson scattering, ALS slicing source

Machine feasibility study

- Accelerator physics design has addressed detailed questions
- Space charge, energy spread, bunch compression, coherent synchrotron ${\sf production}$, ${\sf x-ray}$ beamline design, laser systems, synchronization magnet misalignment, instrumentation, rf cavity design, flat-beam radiation, cavity wakefields, resistive wall impedance, magnet errors,
- Engineering effort has developed conceptual designs in key areas, and confidence in cost estimates
- High rep-rate rf photocathode gun, magnet systems, vacuum systems, systems, conventional facilities beam dump, linac cryomodule design, cryogenics systems, rf power

No show-stoppers

Technologies for LUX exist, proposed engineering developments will meet requirements

- High-brightness high-rep-rate photocathode gun
- Required 3 mm-mrad @ 1 nC demonstrated [1], we have developed high-power design
- Flat-beam production
- < 1 mm-mrad demonstrated [2], we are collaborators in this experiment
- CW superconducting RF
- We have developed engineering modifications for the TESLA design, TJNAF upgrade may use 20 MV/m [3]
- Lasers and optical distribution
- We are developing laser expertise at existing ultrafast experiments (ALS, L'Oasis)
- Superconducting narrow-gap undulators
- We are developing designs and harmonic correction schemes, Karlsruhe & ACCEL work [4]

High-brightness 10 kHz RF photocathode gun

Flat beam image on fluorescent screen

fluorescent screen

- Photo-Injector", Proc. XXth International Linac Conference, Monterey, 2000 Linac Conference, Monterey, 2000 [2] D. Edwards, et al, "The Flat Beam Experiment at the FNAL Photoinjector", Proc. XXth International [1] J.-P. Carneiro, H. T. Edwards, M. J. Fitch, W. H. Hartung, "Emittance Measurementgs at the AO
- [4] A. Geisler et al, "A Superconducting Short Period Undulator", Proc. PAC2001, Chicago, June 2001 [3] L. Harwood, C. Reece, "CEBAF at 12 and 25 GeV", Proc. SRF2001, Tsukuba, Japan, Sept. 2001

J-Lab upgrade cavity

"Old Town" site maximizes synergies with ALS Several potential sites identified

LUX - conclusions

- · LUX presents an opportunity for an outstanding dedicated ultrafast x-ray science facility
- Extremely versatile experimental capabilities
- Multiple beamlines for many user groups
- Feasible machine design using a refined, flexible, upgradeable, concept
- Technologies demonstrated, engineering refinements needed
- Excellent science opportunities across all fields

We are ready to present mission need statement and start conceptual design

Schedule of project funding

		Dolla	rs in mi	Dollars in millions FY'03	Y'03		
	Year	Year	Year	Year	Year Year Year Year Year Total	Year	Total
	1	2	3	4	5	6	
Facility cost:	1						
I PED	Г	15	15				30
] Construction			30	100	60	10	200
Contingency							93
Other project costs	П						
Conceptual design	3						3
] R&D	10	10	5				25
□ Pre-ops]				10	20	30
Total	_	_	П	П	1	Г	381

Initial complement of eight beamlines

Capacity for ~ 20 beamlines

Reduces problems associated with ultra-short electron Femtosecond x-ray pulses from picosecond bunches bunches

Deflecting cavity introduces angle-time correlation into the ~ ps electron bunch

Electrons oscillate along the orbit

Bunch tilt ~ 140 μ -rad (rms) Radiation opening angle ~ 7 μ -rad @ 1Å

Crystal x-ray optics take advantage of the position-time correlation, or angle-time correlation to compress the pulse

undulator source

X-ray pulse compression

- Optical path length I varies linearly with position y on crystal
- silicon crystals following collection optics We propose to use a pair of asymmetrically cut

Source

Undulator

mirror

Tuning x-ray pulse compression as a function of photon energy

- Add rotation about axis normal to Bragg planes \square to rotation of Bragg angle \square
- Variation of crystal asymmetry a keeping pulse compression fixed

$$\square = 0^{\circ}$$

 $\square = 15^{\circ}$

$$\Box = 45^{\circ}$$

 $\Box = 11^{\circ}$

$$\Box = 90^{\circ}$$

X-ray pulse duration, FWHM (fs)

200

150 — Undulator source Bend magnet 50 0 2 4 6 8 10 12 14

Photon energy (keV)

Bend magnet x-ray pulse duration $\square_{x-ray} \geq \frac{E_{beam}}{k_{rf}e} \square^{rf} \sqrt{1 + \left(\square_{y}\right)}$

β (m)

D_c (m)

Undulator x-ray pulse duration

$$\square_{x-ray} \ge \frac{E_{beam}}{k_{rf} e U} \square_{\hat{y}^{i}}^{rf_{i}} \sqrt{1 + \left(\frac{\square_{r^{i}}}{\square_{y^{i}}}\right)^{2}}$$

X-ray pulse duration

RF gun development ANSYS model

	Gun cell	Cell 2 & 3
Frequency	1.3 GHz	1.3 GHz
Rep. rate	10 kHz	10 kHz
Duty factor	∞%≥~	∞5~
E _o	64 MV/m	43 MV/m
P_{peak}	581 kW	1550 kW
Paverage	29 kW	77.5 kW
P _{dens max}	110 W/cm ²	107 W/cm ²

Space Charge Off

PARMELA, MAFIA, HOMDYN, ASTRA Flat beam modeling with

Analytical model

- Characterize circular beam in circular modes
- Uncorrelated (anti-clockwise) mode
- Correlated (clockwise) mode
- Transform to x y modes

1.0 nC
$$\square$$
 = 47.1 um, \square =0.70 um \square = 0.72 um

$$\Box$$
 = 45.5 um, \Box = 0.013 um \Box = 45.5 um, \Box = 0.019 um

0.1 nC

CW superconducting RF

- 1.3 and 3.9 GHz systems
- Accelerating structures
- Linearizing cavity
- Deflecting cavities

- Cavity thermal management
- Conduction through He bath increased
- J-Lab upgrade plan to develop 20 MV/m

Deflecting cavity RF control

- Control cavity phase and amplitude to minimize timing jitter
- "Fast" feedback
- Update setpoint from measured timing drift

- Resolution of 10 fs at 3.9 GHz
- 14-bit ADC at 80 MHz

Cryogenics systems

Delay lines and path lengths

- beamline endstation Need flexible delay to match the path length of the laser pulse and the x-ray pulse at each
- Optical delay kept to minimum to preserve stability
- Master oscillator is extremely stable delay
- Beamline users can select any pulse from the 81.25 MHz train of pulses
- 12.3 ns pulse separation
- Stability over time period of the required delay
- $\sim 10 \ \mu s$
- 10 μs corresponds to ~ 812 round-trips in the master oscillator
- For timing accuracy of 30 fs, the path length variation in this time must not exceed 10 μ m
- 0.012 µm per round-trip
- 12 nm in 12.3 ns
- \approx 1 ms⁻¹
- Requires force beyond that generated from acoustic disturbances or piezoelectric transducer

Coherent synchrotron radiation

- Coherent synchrotron radiation

0 2 Position Along Bunch (psec)

4nm and 1nm output power sensitivity to input electron beam parameters

Base parameters: 500 Amps

200 keV uniform dE
2.0 mm-mrad
1.0 GW input P @240 nm
4-stage harmonic cascade
Time-steady simulations

Nominal output:

138 MW @ 4 nm

11 MW @ 1 nm

Note: 4-nm power scaled down 10X to fit on plots!

